Improvement of Kafka Streaming Using Partition and Multi-Threading in Big Data Environment

Author:

Leang Bunrong,Ean Sokchomrern,Ryu Ga-Ae,Yoo Kwan-HeeORCID

Abstract

The large amount of programmable logic controller (PLC) sensing data has rapidly increased in the manufacturing environment. Therefore, a large data store is necessary for Big Data platforms. In this paper, we propose a Hadoop ecosystem for the support of many features in the manufacturing industry. In this ecosystem, Apache Hadoop and HBase are used as Big Data storage and handle large scale data. In addition, Apache Kafka is used as a data streaming pipeline which contains many configurations and properties that are used to make a better-designed environment and a reliable system, such as Kafka offset and partition, which is used for program scaling purposes. Moreover, Apache Spark closely works with Kafka consumers to create a real-time processing and analysis of the data. Meanwhile, data security is applied in the data transmission phase between the Kafka producers and consumers. Public-key cryptography is performed as a security method which contains public and private keys. Additionally, the public-key is located in the Kafka producer, and the private-key is stored in the Kafka consumer. The integration of these above technologies will enhance the performance and accuracy of data storing, processing, and securing in the manufacturing environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. A Visualization Scheme with a Calendar Heat Map for Abnormal Pattern Analysis in the Manufacturing Process;Doung;Int. J. Content,2017

2. An implementation of a high throughput data ingestion system for machine logs in manufacturing industry

3. An assessment framework for smart manufacturing

4. Recommendations for Implementing the Strategic Initiative Industries 4.0,2013

5. The Big Data Ecosystem is Too Bighttps://medium.com/@Datameer/the-big-data-ecosystem-is-too-damn-big-f715e54e5835

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3