Automated Extraction of Lake Water Bodies in Complex Geographical Environments by Fusing Sentinel-1/2 Data

Author:

Li Mengyun,Hong Liang,Guo Jintao,Zhu AxingORCID

Abstract

Lakes are an important component of global water resources. Lake water bodies extraction based on satellite remote sensing mainly utilizes optical or radar data. However, due to the influence of water quality, ground features with low reflectivity, and smooth surface features, it is still challenging to accurately extract water bodies in complex geographic environments. In this work, we proposed a lake water bodies extraction method by fusing Sentinel-1/2 data. Firstly, the proposed method analyzed the difference of the spectral polarization features between water and non-water in complex geographical environment. Then, the spectral polarization and water index were fused to multidimensional features by feature stacking. Finally, support vector machines are used to classify. Six typical lakes (including urban, mountains, and polluted and clean lakes) in China were used to verify the mapping accuracy. The results showed that extracting lake water bodies by fusing Sentinel-1/2 data had a better performance than using optical or radar data solely, all types of lakes achieved better extraction results, the overall accuracy of lake water extraction is improved by 3%, and the error of commission and omission is controlled within 6%. Comparative experiments indicate that combine radar polarization information with spectral information is helpful to improve the accuracy of different types of lakes extraction in complex geographical environment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3