Treatment of Actual Winery Wastewater by Fenton-like Process: Optimization to Improve Organic Removal, Reduce Inorganic Sludge Production and Enhance Co-Treatment at Municipal Wastewater Treatment Facilities

Author:

Johnson Melody Blythe,Mehrvar Mehrab

Abstract

Despite many wineries being equipped with onsite wastewater treatment, winery wastewater (WWW) co-treatment at municipal wastewater treatment plants (WWTPs) remains a common practice in wine-making regions. The complex and highly variable nature of WWW can result in negative impacts on WWTP operations, highlighting a need for improved co-treatment methods. In this paper, the feasibility of using the Fenton-like process to pre-treat WWW to enhance co-treatment at municipal WWTPs is assessed. First-stage pre-treatment of the WWW, in the form of dilution and settling or aerobic biological treatment, is used prior to the Fenton-like process. A three-factor BBD experimental design is used to identify optimal reaction time and initial H2O2 and Fe3+ concentrations. Chemical oxygen demand (COD) and total organic carbon (TOC) removal rates are not able to accurately reflect the extent of reaction. Additional trials identified solubilization of particulate COD and TOC, as well as samples handling requirements prior to analysis, as factors affecting the apparent COD and TOC removal rates. Inert suspended solids (ISS) generated during the sample handling process are found to be the response variable best suited to quantifying the extent of the Fenton-like reaction. Maximum ISS generation is observed at initial H2O2 and Fe3+ concentrations of 4000 mg/L and 325 mg/L, however, results suggest that optimal concentrations exceed these values. The impact of adding pre-treated WWW, with and without Fenton-like treatment, to municipal WWTPs’ primary clarifiers and aerobic bioreactors is also assessed via bench-scale trials. Challenges associated with co-treating WWW are found to remain despite the pre-treatment alternatives investigated, including negative impacts on simulated primary and secondary effluent quality. The Fenton-like AOP provides limited opportunity to optimize or enhance co-treatment at municipal WWTPs.

Funder

Natural Sciences and Engineering Research Council

Ryerson University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3