DrawnNet: Offline Hand-Drawn Diagram Recognition Based on Keypoint Prediction of Aggregating Geometric Characteristics

Author:

Fang Jiaqi,Feng Zhen,Cai BoORCID

Abstract

Offline hand-drawn diagram recognition is concerned with digitizing diagrams sketched on paper or whiteboard to enable further editing. Some existing models can identify the individual objects like arrows and symbols, but they become involved in the dilemma of being unable to understand a diagram’s structure. Such a shortage may be inconvenient to digitalization or reconstruction of a diagram from its hand-drawn version. Other methods can accomplish this goal, but they live on stroke temporary information and time-consuming post-processing, which somehow hinders the practicability of these methods. Recently, Convolutional Neural Networks (CNN) have been proved that they perform the state-of-the-art across many visual tasks. In this paper, we propose DrawnNet, a unified CNN-based keypoint-based detector, for recognizing individual symbols and understanding the structure of offline hand-drawn diagrams. DrawnNet is designed upon CornerNet with extensions of two novel keypoint pooling modules which serve to extract and aggregate geometric characteristics existing in polygonal contours such as rectangle, square, and diamond within hand-drawn diagrams, and an arrow orientation prediction branch which aims to predict which direction an arrow points to through predicting arrow keypoints. We conducted wide experiments on public diagram benchmarks to evaluate our proposed method. Results show that DrawnNet achieves 2.4%, 2.3%, and 1.7% recognition rate improvements compared with the state-of-the-art methods across benchmarks of FC-A, FC-B, and FA, respectively, outperforming existing diagram recognition systems on each metric. Ablation study reveals that our proposed method can effectively enable hand-drawn diagram recognition.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration of advancements in handwritten document recognition techniques;Intelligent Systems with Applications;2024-06

2. Automated Answer and Diagram Scoring in the STEM Domain: A literature review;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

3. DigiSketch: Automating the Conversion of Hand-Drawn Diagrams to Digital;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

4. An Overview of Hand-Drawn Diagram Recognition Methods and Applications;IEEE Access;2024

5. Computer-aided design of hand-drawn art food packaging design based on a deep neural network model;International Journal for Simulation and Multidisciplinary Design Optimization;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3