Constructal Design of an Arrow-Shaped High Thermal Conductivity Channel in a Square Heat Generation Body

Author:

Zhang Fengyin,Feng Huijun,Chen LingenORCID,You JiangORCID,Xie Zhihui

Abstract

A heat conduction model with an arrow-shaped high thermal conductivity channel (ASHTCC) in a square heat generation body (SHGB) is established in this paper. By taking the minimum maximum temperature difference (MMTD) as the optimization goal, constructal designs of the ASHTCC are conducted based on single, two, and three degrees of freedom optimizations under the condition of fixed ASHTCC material. The outcomes illustrate that the heat conduction performance (HCP) of the SHGB is better when the structure of the ASHTCC tends to be flat. Increasing the thermal conductivity ratio and area fraction of the ASHTCC material can improve the HCP of the SHGB. In the discussed numerical examples, the MMTD obtained by three degrees of freedom optimization are reduced by 8.42% and 4.40%, respectively, compared with those obtained by single and two degrees of freedom optimizations. Therefore, three degrees of freedom optimization can further improve the HCP of the SHGB. Compared the HCPs of the SHGBs with ASHTCC and the T-shaped one, the MMTD of the former is reduced by 13.0%. Thus, the structure of the ASHTCC is proven to be superior to that of the T-shaped one. The optimization results gained in this paper have reference values for the optimal structure designs for the heat dissipations of various electronic devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3