Development of an Effective Corruption-Related Scenario-Based Testing Approach for Robustness Verification and Enhancement of Perception Systems in Autonomous Driving

Author:

Hsiang Huang1,Chen Yung-Yuan1ORCID

Affiliation:

1. Department of Electrical Engineering, National Taipei University, New Taipei City 23741, Taiwan

Abstract

Given that sensor-based perception systems are utilized in autonomous vehicle applications, it is essential to validate such systems to ensure their robustness before they are deployed. In this study, we propose a comprehensive simulation-based process to verify and enhance the robustness of sensor-based perception systems in relation to corruption. Firstly, we introduce a methodology and scenario-based corruption generation tool for creating a variety of simulated test scenarios. These scenarios can effectively mimic real-world traffic environments, with a focus on corruption types that are related to safety concerns. An effective corruption similarity filtering algorithm is then proposed to eliminate corruption types with high similarity and identify representative corruption types that encompass all considered corruption types. As a result, we can create efficient test scenarios for corruption-related robustness with reduced testing time and comprehensive scenario coverage. Subsequently, we conduct vulnerability analysis on object detection models to identify weaknesses and create an effective training dataset for enhancing model vulnerability. This improves the object detection models’ tolerance to weather and noise-related corruptions, ultimately enhancing the robustness of the perception system. We use case studies to demonstrate the feasibility and effectiveness of the proposed procedures for verifying and enhancing robustness. Furthermore, we investigate the impact of various “similarity overlap threshold” parameter settings on scenario coverage, effectiveness, scenario complexity (size of training and testing datasets), and time costs.

Funder

Ministry of Science and Technology (MOST) in Taiwan

MSC Software

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3