Employing Robust Principal Component Analysis for Noise-Robust Speech Feature Extraction in Automatic Speech Recognition with the Structure of a Deep Neural Network

Author:

Hung Jeih-weih,Lin Jung-Shan,Wu Po-Jen

Abstract

In recent decades, researchers have been focused on developing noise-robust methods in order to compensate for noise effects in automatic speech recognition (ASR) systems and enhance their performance. In this paper, we propose a feature-based noise-robust method that employs a novel data analysis technique—robust principal component analysis (RPCA). In the proposed scenario, RPCA is employed to process a noise-corrupted speech feature matrix, and the obtained sparse partition is shown to reveal speech-dominant characteristics. One apparent advantage of using RPCA for enhancing noise robustness is that no prior knowledge about the noise is required. The proposed RPCA-based method is evaluated with the Aurora-4 database and a task using a state-of-the-art deep neural network (DNN) architecture as the acoustic models. The evaluation results indicate that the newly proposed method can provide the original speech feature with significant recognition accuracy improvement, and can be cascaded with mean normalization (MN), mean and variance normalization (MVN), and relative spectral (RASTA)—three well-known and widely used feature robustness algorithms—to achieve better performance compared with the individual component method.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved wireless acoustic sensor network for analysing audio properties;International Journal of Information Technology;2023-08-22

2. Wavelet-Based Weighted Low-Rank Sparse Decomposition Model for Speech Enhancement Using Gammatone Filter Bank Under Low SNR Conditions;Fluctuation and Noise Letters;2023-03-10

3. Spectrogram-based classification on vehicles with modified loud exhausts via convolutional neural networks;Applied Acoustics;2023-03

4. Content-based encrypted speech retrieval scheme with deep hashing;Multimedia Tools and Applications;2022-02-14

5. Speech Recognition using EfficientNet;Proceedings of the 2020 5th International Conference on Multimedia Systems and Signal Processing;2020-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3