REV Application in DEM Analysis of Non-Vibrational Rock Splitting Method to Propose Feasible Borehole Spacing

Author:

Jafri Turab,Yoo Hankyu

Abstract

Most of the tunnel excavation methods involve the use of explosion and vibration techniques that is not feasible in urban areas due to unavoidable production of noise, vibration, and dust. The environmental considerations of tunneling projects in urban areas demand the use of excavation methods in which minimum noise, vibration, and dust is produced. In this study, non-vibrational rock splitting method is introduced that involves the fragmentation of rock segments using a split-wedge system inserted into already drilled boreholes. The main objective of this study is the investigation of important parameters involved in the non-vibrational rock splitting method for improving its efficiency. Discrete element analysis of this method was performed using Particle Flow Code (PFC2D) and the concept of Representative Elementary Volume (REV) was used to simulate intact rocks based on their unconfined compressive strength and modulus ratio concept. Maximum borehole spacing values were obtained using the numerical simulation of rock splitting process in intact rocks. The numerical analysis results show that increased borehole spacing values can be used for all intact rock types in cases of average modulus ratio and high modulus ratio and also that decreasing the borehole depth generally results in the use of increased borehole spacing.

Funder

Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Development of low noise and vibration tunneling methods using slots by single hole continuous drilling

2. Guidance Manual for Transit Noise and Vibration Impact Assessment,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3