Current Compensation in Grid-Connected VSCs using Advanced Fuzzy Logic-based Fluffy-Built SVPWM Switching

Author:

Teekaraman Yuvaraja,Kuppusamy Ramya,Baghaee Hamid RezaORCID,Vukobratović Marko,Balkić Zoran,Nikolovski SreteORCID

Abstract

A main focus in microgrids is the power quality issue. The used renewable sources fluctuate and this fluctuation has to be suppressed by designing a control variable to nullify the circulating current caused by voltage fluctuations and deviations. The switching losses across power electronic switches, harmonics, and circulating current are the issues that we discuss in this article. The proposed intelligent controller is an interface between a voltage-sourced converter and a utility grid that affords default switching patterns with less switching loss, less current harmonic content, and overcurrent protection, and is capable of handling the nonlinearities and uncertainties in the grid system. The interfaced controller needs to be synchronized to a utility grid to ensure that the grid–lattice network can be fine-tuned in order to inject/absorb the prominent complex reactive energy to/from the utility grid so as to maintain the variable power factor at unity, which, in turn, will improve the system’s overall efficiency for all connected nonlinear loads. The intelligent controller for stabilizing a smart grid is developed by implementing a fuzzy-built advance control configuration to achieve a faster dynamic response and a more suitable direct current link performance. The innovation in this study is the design of fuzzy-based space vector pulse width modulation controller that exploits the hysteresis current control and current compensation in a grid-connected voltage source converter. By using the proposed scheme, a current compensation strategy is proposed along with an advanced modulation controller to utilize the DC link voltage of a voltage source converter. To demonstrate the effectiveness of the proposed control scheme, offline digital time-domain simulations were carried out in MATLAB/Simulink, and the simulated results were verified using the experimental setup to prove the effectiveness, authenticity, and accuracy of the proposed method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3