Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers

Author:

Guilbert Damien,Vitale GianpaoloORCID

Abstract

This paper deals with two main issues regarding the specific energy consumption in an electrolyzer (i.e., the Faraday efficiency and the converter topology). The first aspect is addressed using a multistack configuration of proton exchange membrane (PEM) electrolyzers supplied by a wind turbine conversion system (WTCS). This approach is based on the modeling of the wind turbine and the electrolyzers. The WTCS and the electrolyzers are interfaced through a stacked interleaved DC–DC buck converter (SIBC), due to its benefits for this application in terms of the output current ripple and reliability. This converter is controlled so that it can offer dynamic behavior that is faster than the wind turbine, avoiding overvoltage during transients, which could damage the PEM electrolyzers. The SIBC is designed to be connected in array configuration (i.e., parallel architecture), so that each converter operates at its maximum efficiency. To assess the performance of the power management strategy, experimental tests were carried out. The reported results demonstrate the correct behavior of the system during transient operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Role of renewable energy sources in environmental protection: A review

2. https://www.cleantech.com/the-role-of-green-hydrogen-in-global-decarbonization/

3. https://www.iea.org/tcep/energyintegration/hydrogen/

4. Flexibility Concepts for the German Power Supply in 2050: Ensuring Stability in the Age of Renewable Energies;Byfield,2016

5. Review of energy system flexibility measures to enable high levels of variable renewable electricity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3