Assessing the Use of Reinforcement Learning for Integrated Voltage/Frequency Control in AC Microgrids

Author:

Younesi AbdollahORCID,Shayeghi HosseinORCID,Siano PierluigiORCID

Abstract

The main purpose of this paper is to present a novel algorithmic reinforcement learning (RL) method for damping the voltage and frequency oscillations in a micro-grid (MG) with penetration of wind turbine generators (WTG). First, the continuous-time environment of the system is discretized to a definite number of states to form the Markov decision process (MDP). To solve the modeled discrete RL-based problem, Q-learning method, which is a model-free and simple iterative solution mechanism is used. Therefore, the presented control strategy is adaptive and it is suitable for the realistic power systems with high nonlinearities. The proposed adaptive RL controller has a supervisory nature that can improve the performance of any kind of controllers by adding an offset signal to the output control signal of them. Here, a part of Denmark distribution system is considered and the dynamic performance of the suggested control mechanism is evaluated and compared with fuzzy-proportional integral derivative (PID) and classical PID controllers. Simulations are carried out in two realistic and challenging scenarios considering system parameters changing. Results indicate that the proposed control strategy has an excellent dynamic response compared to fuzzy-PID and traditional PID controllers for damping the voltage and frequency oscillations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-agent reinforcement learning for multi-area power exchange;Electric Power Systems Research;2024-10

2. Autonomous Microgrids Optimization Using Reinforcement Learning: Applications, Challenges and Prospects;2024 1st International Conference on Smart Energy Systems and Artificial Intelligence (SESAI);2024-06-03

3. Reinforcement learning in wind energy - a review;International Journal of Green Energy;2023-11-15

4. On data-driven modeling and control in modern power grids stability: Survey and perspective;Applied Energy;2023-11

5. Design and Implementation of a Damping Controller in Microgrids;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3