Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment

Author:

Perez LarissaORCID,Cossu Remo,Couzi Camille,Penesis Irene

Abstract

High levels of turbulence have been proven to substantially increase the blade loadings on tidal turbines, outlining the need of properly characterizing turbulence parameters in tidal energy sites. The presence of long surface gravity waves may cause a significant bias on the estimation of these parameters, which requires wave-turbulence decomposition methods that are currently missing from guidelines. Here, three techniques of decomposing wave and turbulence are tested: the stopband filter (SB), moving average filter (MA), and synchrosqueezing wavelet transform (SWT). The study site, Banks Strait, Tasmania, is a 16 km wide channel that presents high potential for tidal energy generation. Wave peak periods at the study site were found to vary mostly between 7 and 12 s, with maximum exceeding 15 s. Turbulence intensities (TI), turbulent kinetic energy (TKE), and integral scales are quantified. Our results indicate differences between the estimates obtained from each method. The MA highly underestimates turbulence, resulting in TI values which were nearly 50% lower than those obtained from other decomposition methods. While TI and TKE estimated from the SB and the SWT techniques are quite similar, integral length scales are considerably underestimated by the SB. These findings reveal that the SWT is a more reliable method because of the more accurate estimates of turbulence parameters and indicate the need of establishing guidelines which address wave-turbulence decomposition in tidal stream energy site assessments. Despite having shown to be quite a versatile technique, further investigation of its applicability in data from other prospective tidal energy sites is necessary to fully assess the generality of the SWT technique.

Funder

Australian Renewable Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3