Experiments on Heat Transfer of Supercritical Pressure Kerosene in Mini Tube under Ultra-High Heat Fluxes

Author:

Yan Jianguo,Liu Shouchun,Guo Pengcheng,Bi Qincheng

Abstract

Heat transfer of supercritical-pressure kerosene is crucial for regenerative cooling systems in rocket engines. In this study, experiments were devoted to measure the heat transfer of supercritical-pressure kerosene under ultra-high heat fluxes. The kerosene flowed horizontally in a mini circular tube with a 1.0 mm inner diameter and was heated uniformly under pressures of 10–25 MPa, mass fluxes of 8600–51,600 kg/m2 s, and a maximum heat flux of up to 33.6 MW/m2. The effects of the operating parameters on the heat transfer of supercritical-pressure kerosene were discussed. It was observed that the heat transfer coefficient of kerosene increases at a higher mass flux and inlet bulk temperature, but is little affected by pressure. The heat transfer of supercritical-pressure kerosene is classified into two regions: normal heat transfer and enhanced heat transfer. When the wall temperature exceeds a certain value, heat transfer is enhanced, which could be attributed to pseudo boiling. This phenomenon is more likely to occur under higher heat flux and lower mass flux conditions. In addition, the experimental data were compared with several existing heat transfer correlations, in which one of these correlations can relatively well predict the heat transfer of supercritical-pressure kerosene. The results drawn from this study could be beneficial to the regenerative cooling technology for rocket engines.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3