Data Improvement Model Based on ECG Biometric for User Authentication and Identification

Author:

Barros AlexORCID,Resque Paulo,Almeida João,Mota Renato,Oliveira HelderORCID,Rosário DenisORCID,Cerqueira EduardoORCID

Abstract

The rapid spread of wearable technologies has motivated the collection of a variety of signals, such as pulse rate, electrocardiogram (ECG), electroencephalogram (EEG), and others. As those devices are used to do so many tasks and store a significant amount of personal data, the concern of how our data can be exposed starts to gain attention as the wearable devices can become an attack vector or a security breach. In this context, biometric also has expanded its use to meet new security requirements of authentication demanded by online applications, and it has been used in identification systems by a large number of people. Existing works on ECG for user authentication do not consider a population size close to a real application. Finding real data that has a big number of people ECG’s data is a challenge. This work investigates a set of steps that can improve the results when working with a higher number of target classes in a biometric identification scenario. These steps, such as increasing the number of examples, removing outliers, and including a few additional features, are proven to increase the performance in a large data set. We propose a data improvement model for ECG biometric identification (user identification based on electrocardiogram—DETECT), which improves the performance of the biometric system considering a greater number of subjects, which is closer to a security system in the real world. The DETECT model increases precision from 78% to 92% within 1500 subjects, and from 90% to 95% within 100 subjects. Moreover, good False Rejection Rate (i.e., 0.064003) and False Acceptance Rate (i.e., 0.000033) were demonstrated. We designed our proposed method over PhysioNet Computing in Cardiology 2018 database.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3