Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks

Author:

He ZhenORCID,He Hangen

Abstract

Nowadays, video surveillance has become ubiquitous with the quick development of artificial intelligence. Multi-object detection (MOD) is a key step in video surveillance and has been widely studied for a long time. The majority of existing MOD algorithms follow the “divide and conquer” pipeline and utilize popular machine learning techniques to optimize algorithm parameters. However, this pipeline is usually suboptimal since it decomposes the MOD task into several sub-tasks and does not optimize them jointly. In addition, the frequently used supervised learning methods rely on the labeled data which are scarce and expensive to obtain. Thus, we propose an end-to-end Unsupervised Multi-Object Detection framework for video surveillance, where a neural model learns to detect objects from each video frame by minimizing the image reconstruction error. Moreover, we propose a Memory-Based Recurrent Attention Network to ease detection and training. The proposed model was evaluated on both synthetic and real datasets, exhibiting its potential.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3