Abstract
Inductive power transfer (IPT) systems have become more and more popular recently. To improve transient responses and load disturbance responses, this paper proposes a predictive controller design for a three-winding inductive power transfer (IPT) system. First, a three-winding IPT is presented. Next, a predictive controller is designed based on augmented variables and a performance index. Finally, a digital signal processor, TMS 320F2808, made by Texas Instrument, is used to execute the predictive control algorithms and to control the switching states of the power devices. An IPT system, with DC 220 V input, DC 130 V output, and a rated power of 2 kW, is implemented. A buck converter is used to provide an adjustable output voltage and output current to charge a battery set. Experimental results show that the proposed predictive controllers of the IPT system have better performance than proportional-integral (PI) controllers, including faster transient responses and better load disturbance responses.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献