Impact of Energy and Carbon Emission of a Supply Chain Management with Two-Level Trade-Credit Policy

Author:

Vandana ,Singh S. R.,Yadav Dharmendra,Sarkar BiswajitORCID,Sarkar Mitali

Abstract

Supply chain management aims to integrate environmental thinking with efficient energy consumption into supply chain management. It includes a flexible manufacturing process, more product delivery to customers, optimum energy consumption, and reduced waste. The manufacturing process can be made more flexible through volume agility. In this scenario, production cannot be constant, and with the concept of volume agility, production is taken as a decision variable under the effect of optimum energy consumption. Considering a two-echelon supply chain, we consider a producer and supplier with two-level-trade-credit policies (TLTCP) with the optimum consumption. To reduce the integrated total inventory cost, we believe that demand is a function of the credit period and selling price. The cost function is analyzed, either with the credit period dependent demand rate or with the selling price dependent demand rate through the numerical examples under energy costs. Energy and carbon emission costs are introduced in setup/ordering cost, holding cost, and item cost for producer and supplier. The effect of inflation on the total cost cannot be ignored; this model is being developed for deteriorating items with the simultaneous impact of volume agility, energy, carbon emission cost, and two-level-trade-credit policies with inflation. This supply chain model was solved analytically and obtained the optimum decision variables in a quasi-closed form solution. An illustrative theorem is being utilized to analyze the optimum result for all the decision parameters. The convexity of the objective function is being obtained analytically as well as graphically. Finally, numerical examples and sensitivity analysis are employed to illustrate the present study and with managerial insights.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3