A Long-Term Analysis of the Architecture and Operation of Water Film Cooling System for Commercial PV Modules

Author:

Silva ViníciusORCID,Martinez Julio,Heideier Raphael,Bernal Jonathas,Gimenes AndréORCID,Udaeta MiguelORCID,Saidel Marco

Abstract

This work aims at analyzing and architecting natural and artificial parameters to model a water-film cooling system for photovoltaic modules for some months under warm conditions. Methodologically, the theoretical and technical aspects were structured to develop, implement, monitor, and assess the cooling system at an on-grid, outdoor testing unit, considering the following: (i) the criteria to select and to approve the implementation site (infrastructure and climatologic and solarimetric conditions); (ii) the types, frequency and qualities of the monitored data; (iii) the system measurement, monitoring and control equipment; (iv) the commissioning of the system as a whole; and (v) the tests and results empirically obtained. The water-film cooling system reduces the temperature by 15–19%, on average, and up to a maximum of 24–35%. In terms of electric power, there was an average gain of 5–9% at the time of day with the highest solar radiation, and maximum gains of 12% on days with solar radiation above average. Regarding gross energy, average gains of 2.3–6%, and maximum gains of 6.3–12%, were obtained. It was concluded that the test unit helps understand the natural phenomena and the development, operation, and maintenance of performance gain systems of on-grid PV modules for construction on a commercial scale.

Funder

Coordenação de Aperfeiçoamento de Pessoal deNível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference86 articles.

1. Introduction to Concepts of Energy Systems for Clean Development [Iniciação a Conceitos de Sistemas Energéticos Para o Desenvolvimento Limpo];Grimoni,2015

2. Full assessment energy-sources for inclusive energy-resources planning

3. Performance of a hybrid photovoltaic/thermal system utilizing water‐Al 2 O 3 nanofluid and fins

4. Numerical Analysis of Solar Hybrid Photovoltaic Thermal Air Collector Simulation by ANSYS Numerical Analysis of Solar Hybrid Photovoltaic Thermal Air Collector Simulation by ANSYS;Abdullah;CFD Lett.,2019

5. Temperature testing and analysis of PV modules PER ANSI/UL 1703 and IEC 61730 standards

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3