Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler

Author:

Saari JussiORCID,Sermyagina EkaterinaORCID,Kaikko Juha,Haider Markus,Hamaguchi Marcelo,Vakkilainen EsaORCID

Abstract

Sustainability and energy efficiency have become important factors for many industrial processes, including chemical pulping. Recently complex back-end heat recovery solutions have been applied to biomass-fired boilers, lowering stack temperatures and recovering some of the latent heat of the moisture by condensation. Modern kraft recovery boiler flue gas offers still unutilized heat recovery possibilities. Scrubbers have been used, but the focus has been on gas cleaning; heat recovery implementations remain simple. The goal of this study is to evaluate the potential to increase the power generation and efficiency of chemical pulping by improved back-end heat recovery from the recovery boiler. Different configurations of heat recovery schemes and different heat sink options are considered, including heat pumps. IPSEpro simulation software is used to model the boiler and steam cycle of a modern Nordic pulp mill. When heat pumps are used to upgrade some of the recovered low-grade heat, up to +23 MW gross and +16.7 MW net power generation increase was observed when the whole pulp mill in addition to the boiler and steam cycle is considered as heat consumer. Combustion air humidification proved to yield a benefit only when assuming the largest heat sink scenario for the pulp mill.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. World Energy Outlook 2019,2019

2. Chemical Pulping Part 2, Recovery of Chemicals and Energy;Tikka,2008

3. More District Heat Was Produced with Renewable Fuels than with Fossil Fuels for the First Time in 2019https://www.stat.fi/til/salatuo/2019/salatuo_2019_2020-11-03_tie_001_fi.html

4. Bio-oil and Biochar as Additional Revenue Streams in South American Kraft Pulp Mills

5. Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3