An Adaptive Multi-Mode Navigation Method with Intelligent Virtual Sensor Based on Long Short-Term Memory in GNSS Restricted Environment

Author:

Wang Rong1,Rui Yu1,Zhao Jingxin1,Xiong Zhi1,Liu Jianye1

Affiliation:

1. Navigation Research Center, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Aiming at the problem of fast divergence of pure inertial navigation system without correction under the condition of GNSS restricted environment, this paper proposes a multi-mode navigation method with an intelligent virtual sensor based on long short-term memory (LSTM). The training mode, predicting mode, and validation mode for the intelligent virtual sensor are designed. The modes are switching flexibly according to GNSS rejecting situation and the status of the LSTM network of the intelligent virtual sensor. Then the inertial navigation system (INS) is corrected, and the availability of the LSTM network is also maintained. Meanwhile, the fireworks algorithm is adopted to optimize the learning rate and the number of hidden layers of LSTM hyperparameters to improve the estimation performance. The simulation results show that the proposed method can maintain the prediction accuracy of the intelligent virtual sensor online and shorten the training time according to the performance requirements adaptively. Under small sample conditions, the training efficiency and availability ratio of the proposed intelligent virtual sensor are improved significantly more than the neural network (BP) as well as the conventional LSTM network, improving the navigation performance in GNSS restricted environment effectively and efficiently.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

“Qing Lan Project” of Jiangsu Province, the Science and Technology Innovation Project for the Selected Returned Overseas Chinese Scholars in Nanjing, the 111 Project

Shanghai Aerospace Science and Technology Innovation Fund

Introduction plan of high end experts

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3