Ball Detection Using Deep Learning Implemented on an Educational Robot Based on Raspberry Pi

Author:

Keča Dominik1,Kunović Ivan1,Matić Jakov1,Sovic Krzic Ana1

Affiliation:

1. University of Zagreb, Faculty of Electrical Engineering and Computing, 10000 Zagreb, Croatia

Abstract

RoboCupJunior is a project-oriented competition for primary and secondary school students that promotes robotics, computer science and programing. Through real life scenarios, students are encouraged to engage in robotics in order to help people. One of the popular categories is Rescue Line, in which an autonomous robot has to find and rescue victims. The victim is in the shape of a silver ball that reflects light and is electrically conductive. The robot should find the victim and place it in the evacuation zone. Teams mostly detect victims (balls) using random walk or distant sensors. In this preliminary study, we explored the possibility of using a camera, Hough transform (HT) and deep learning methods for finding and locating balls with the educational mobile robot Fischertechnik with Raspberry Pi (RPi). We trained, tested and validated the performance of different algorithms (convolutional neural networks for object detection and U-NET architecture for sematic segmentation) on a handmade dataset made of images of balls in different light conditions and surroundings. RESNET50 was the most accurate, and MOBILENET_V3_LARGE_320 was the fastest object detection method, while EFFICIENTNET-B0 proved to be the most accurate, and MOBILENET_V2 was the fastest semantic segmentation method on the RPi. HT was by far the fastest method, but produced significantly worse results. These methods were then implemented on a robot and tested in a simplified environment (one silver ball with white surroundings and different light conditions) where HT had the best ratio of speed and accuracy (4.71 s, DICE 0.7989, IoU 0.6651). The results show that microcomputers without GPUs are still too weak for complicated deep learning algorithms in real-time situations, although these algorithms show much higher accuracy in complicated environment situations.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3