An Optimized Deep Neural Network for Overhead Contact System Recognition from LiDAR Point Clouds

Author:

Liu SipingORCID,Tu XiaohanORCID,Xu ChengORCID,Chen LipeiORCID,Lin ShuaiORCID,Li RenfaORCID

Abstract

As vital infrastructures, high-speed railways support the development of transportation. To maintain the punctuality and safety of railway systems, researchers have employed manual and computer vision methods to monitor overhead contact systems (OCSs), but they have low efficiency. Investigators have also used light detection and ranging (LiDAR) to generate point clouds by emitting laser beams. The point cloud is segmented for automatic OCS recognition, which improves recognition efficiency. However, existing LiDAR point cloud segmentation methods have high computational/model complexity and latency. In addition, they cannot adapt to embedded devices with different architectures. To overcome these issues, this article presents a lightweight neural network EffNet consisting of three modules: ExtractA, AttenA, and AttenB. ExtractA extracts the features from the disordered and irregular point clouds of an OCS. AttenA keeps information flowing in EffNet while extracting useful features. AttenB uses channel and spatialwise statistics to enhance important features and suppress unimportant ones efficiently. To further speed up EffNet and match it with diverse architectures, we optimized it with a generation framework of tensor programs and deployed it on embedded systems with different architectures. Extensive experiments demonstrated that EffNet has at least a 0.57% higher mean accuracy, but with 25.00% and 9.30% lower computational and model complexity for OCS recognition than others, respectively. The optimized EffNet can be adapted to different architectures. Its latency decreased by 51.97%, 56.47%, 63.63%, 82.58%, 85.85%, and 91.97% on the NVIDIA Nano CPU, TX2 CPU, UP Board CPU, Nano GPU, TX2 GPU, and RTX 2,080 Ti GPU, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3