Abstract
The quality of Gravity Recovery and Climate Experiment (GRACE) observation is the prerequisite for obtaining the high-precision GRACE temporal gravity field model. To study the influence of new-generation GRACE Level-1B Release 03 (RL03) data and the new atmosphere and ocean de-aliasing (AOD1B) products on recovering temporal gravity field models and precise orbit determination (POD) solutions, we combined the global positioning system and K-band ranging-rate (KBRR) observations of GRACE satellites to estimate the effect of different data types on these solutions. The POD and monthly gravity field solutions are obtained from 2005 to 2010 by SHORDE software developed by the Shanghai Astronomical Observatory. The post-fit residuals of the KBRR data were decreased by approximately 10%, the precision of three-direction positions of the GRACE POD was improved by approximately 5%, and the signal-to-noise ratio of the monthly gravity field model was enhanced. The improvements in the new release of monthly gravity field model and POD solutions can be attributed to the enhanced Level-1B KBRR data and the AOD1B model. These improvements were primarily due to the enhanced of KBRR data; the effect of the AOD1B model was not significant. The results also showed that KBRR data slightly improve the satellite orbit precision, and obviously enhance the precision of the gravity field model.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences