Classification of Boulders in Coastal Environments Using Random Forest Machine Learning on Topo-Bathymetric LiDAR Data

Author:

Hansen Signe SchillingORCID,Ernstsen Verner BrandbygeORCID,Andersen Mikkel Skovgaard,Al-Hamdani ZyadORCID,Baran Ramona,Niederwieser Manfred,Steinbacher Frank,Kroon AartORCID

Abstract

Boulders on the seabed in coastal marine environments provide key geo- and ecosystem functions and services. They serve as natural coastal protection by dissipating wave energy, and they form an important hard substrate for macroalgae, and hence for coastal marine reefs that serve as important habitats for fish. The aim of this study was to investigate the possibility of developing an automated method to classify boulders from topo-bathymetric LiDAR data in coastal marine environments. The Rødsand lagoon in Denmark was used as study area. A 100 m × 100 m test site was divided into a training and a test set. The classification was performed using the random forest machine learning algorithm. Different tuning parameters were tested. The study resulted in the development of a nearly automated method to classify boulders from topo-bathymetric LiDAR data. Different measure scores were used to evaluate the performance. For the best parameter combination, the recall of the boulders was 57%, precision was 27%, and F-score 37%, while the accuracy of the points was 99%. The most important tuning parameters for boulder classification were the subsampling level, the choice of the neighborhood radius, and the features. Automatic boulder detection will enable transparent, reproducible, and fast detection and mapping of boulders.

Funder

Innovationsfonden

EU Bonus Ecomap

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Marin Habitatkortlægning I De Indre Danske Farvande;Al-Hamdani,2014

2. Marin Habitatkortlægning i Skagerrak og Nordsøen 2015;Al-Hamdani,2015

3. Kortlægning af Natura 2000-Områder Marin Habitatkortlægning i Skagerrak Og Nordsøen 2017–2018;Al-Hamdani,2019

4. Analyse af 1170 Stenrev Henholdsvis Indenfor og Udenfor Marine Habitatområder;Al-Hamdani,2018

5. Analyse af Naturtype 1170 Stenrev Henholdsvis Indenfor og Udenfor de Marine Habitatområder;Al-Hamdani,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3