SC-SM CAM: An Efficient Visual Interpretation of CNN for SAR Images Target Recognition

Author:

Feng ZhenpengORCID,Ji HongbingORCID,Stanković LjubišaORCID,Fan JingyuanORCID,Zhu MingzheORCID

Abstract

Convolutional neural networks (CNNs) have successfully achieved high accuracy in synthetic aperture radar (SAR) target recognition; however, the intransparency of CNNs is still a limiting or even disqualifying factor. Therefore, visually interpreting CNNs with SAR images has recently drawn increasing attention. Various class activation mapping (CAM) methods are adopted to discern the relationship between CNN’s decision and image regions. Unfortunately, most existing CAM methods are based on optical images; thus, they usually lead to a limiting visualization effect for SAR images. Although a recently proposed Self-Matching CAM can obtain a satisfactory effect for SAR images, it is quite time-consuming, due to there being hundreds of self-matching operations per image. G-SM-CAM reduces the time of such operation dramatically, but at the cost of visualization effect. Based on the limitations of the above methods, we propose an efficient method, Spectral-Clustering Self-Matching CAM (SC-SM CAM). Spectral clustering is first adopted to divide feature maps into groups for efficient computation. In each group, similar feature maps are merged into an enhanced feature map with more concentrated energy in a specific region; thus, the saliency heatmaps may more accurately tally with the target. Experimental results demonstrate that SC-SM CAM outperforms other SOTA CAM methods in both effect and efficiency.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3