Managing Time-Sensitive IoT Applications via Dynamic Application Task Distribution and Adaptation

Author:

Korala Harindu,Georgakopoulos Dimitrios,Jayaraman Prem PrakashORCID,Yavari Ali

Abstract

The recent proliferation of the Internet of Things has led to the pervasion of networked IoT devices such as sensors, video cameras, mobile phones, and industrial machines. This has fueled the growth of Time-Sensitive IoT (TS-IoT) applications that must complete the tasks of (1) collecting sensor observations they need from appropriate IoT devices and (2) analyzing the data within application-specific time-bounds. If this is not achieved, the value of these applications and the results they produce depreciates. At present, TS-IoT applications are executed in a distributed IoT environment that consists of heterogeneous computing and networking resources. Due to the heterogeneous and volatile nature (e.g., unpredictable data rates and sudden disconnections) of the IoT environment, it has become a major challenge to ensure the time-bounds of TS-IoT applications. Many existing task management techniques (i.e., techniques that are used to manage the execution of IoT applications in distributed computing resources) that have been proposed to support TS-IoT applications to meet their time-bounds do not provide a sophisticated and complete solution to manage the TS-IoT applications in a manner in which their time-bounds are guaranteed. This paper proposes TIDA, a comprehensive platform for managing TS-IoT applications that includes a task management technique, called DTDA, which incorporates novel task sizing, distribution, and dynamic adaptation techniques. DTDA’s task sizing technique measures the computing resources required to complete each task of the TS-IoT application at hand in each available IoT device, edge computer (e.g., network gateways), and cloud virtual machine. DTDA’s task distribution technique distributes and executes the tasks of each TS-IoT application in a manner that their time-bound requirements are met. Finally, DTDA includes a task adaptation technique that dynamically adapts the distribution of tasks (i.e., redistributes TS-IoT application tasks) when it detects a potential application time-bound violation. The paper describes a proof-of-concept implementation of TIDA that uses Microsoft’s Orleans Actor Framework. Finally, the paper demonstrates that the DTDA task management technique of TIDA meets the time-bound requirements of TS-IoT applications by presenting an experimental evaluation involving real time-sensitive IoT applications from the smart city domain.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3