A Study on Predicting the Outbreak of COVID-19 in the United Arab Emirates: A Monte Carlo Simulation Approach

Author:

Alkhateeb NoorORCID,Sallabi FaragORCID,Harous SaadORCID,Awad Mamoun

Abstract

According to the World Health Organization updates, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic between 2019 and 2022, with millions of confirmed cases and deaths worldwide. There are various approaches to predicting the suspected, infected, and recovered (SIR) cases with different factual or epidemiological models. Some of the recent approaches to predicting the COVID-19 outbreak have had positive impacts in specific nations. Results show that the SIR model is a significant tool to cast the dynamics and predictions of the COVID-19 outbreak compared to other epidemic models. In this paper, we employ the Monte Carlo simulation to predict the spread of COVID-19 in the United Arab Emirates. We study traditional SIR models in general and focus on a time-dependent SIR model, which has been proven more adaptive and robust in predicting the COVID-19 outbreak. We evaluate the time-dependent SIR model. Then, we implement a Monte Carlo model. The Monte Carlo model uses the parameters extracted from the Time-Dependent SIR Model. The Monte Carlo model exhibited a better prediction accuracy and resembles the data collected from the Ministry of Cabinet Affairs, United Arab Emirates, between April and July 2020.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. World Health Organization (2020). Coronavirus Disease (COVID-19) Outbreak Situation, WHO.

2. Ghiasvand, S. (2020). Predicting the prevalence of COVID-19 pandemic in Germany, Technical University of Dresden. Technical Report, Working Paper 2020.

3. Clinical characteristics of 145 patients with coronavirus disease 2019 (COVID-19) in Taizhou, Zhejiang, China;Infection,2020

4. New SARS-like virus in China triggers alarm;Science,2020

5. The mathematics of infectious diseases;SIAM Rev.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3