Introducing Two Parsimonious Standard Power Mixture Models for Bimodal Proportional Data with Application to Loss Given Default

Author:

Larney JanetteORCID,Grobler Gerrit Lodewicus,Allison James Samuel

Abstract

The need to model proportional data is common in a range of disciplines however, due to its bimodal nature, U- or J-shaped data present a particular challenge. In this study, two parsimonious mixture models are proposed to accurately characterise this proportional U- and J-shaped data. The proposed models are applied to loss given default data, an application area where specific importance is attached to the accuracy with which the mean is estimated, due to its linear relationship with a bank’s regulatory capital. In addition to using standard information criteria, the degree to which bias reduction in the estimation of the distributional mean can be achieved is used as a measure of model performance. The proposed models outperform the benchmark model with reference to the information criteria and yield a reduction in the distance between the empirical and distributional means. Given the special characteristics of the dataset, where a high proportion of observations are close to zero, a methodology for choosing a rounding threshold in an objective manner is developed as part of the data preparation stage. It is shown how the application of this rounding threshold can reduce bias in moment estimation regardless of the model choice.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3