Abstract
The wave propagation in viscothermoelastic materials is discussed in the present work using the nonlocal thermoelasticity model. This model was created using the Lord and Shulman generalized thermoelastic model due to the consequences of delay times in the formulations of heat conduction and the motion equations. This model was created using Eringen’s theory of the nonlocal continuum. The linear Kelvin–Voigt viscoelasticity model explains the viscoelastic properties of isotropic material. The analytical solutions for the displacement, temperature, and thermal stress distributions are obtained by the eigenvalues approach with the integral transforms in the Laplace transform techniques. The field functions, namely displacement, temperature, and stress, have been graphically depicted for local and nonlocal viscothermoelastic materials to assess the quality of wave propagation in various outcomes of interest. The results are displayed graphically to illustrate the effects of nonlocal thermoelasticity and viscoelasticity. Comparisons are made with and without thermal relaxation time. The outcomes show that Eringen’s nonlocal viscothemoelasticity theory is a promising criterion for analyzing nanostructures, considering the small size effects.
Funder
King Abdulaziz University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献