An Ensemble Classification Method for Brain Tumor Images Using Small Training Data

Author:

Nguyen Dat Tien,Nam Se HyunORCID,Batchuluun Ganbayar,Owais MuhammadORCID,Park Kang Ryoung

Abstract

Computer-aided diagnosis (CAD) systems have been used to assist doctors (radiologists) in diagnosing many types of diseases, such as thyroid, brain, breast, and lung cancers. Previous studies have successfully built CAD systems using large, annotated datasets to train their models. The use of a large volume of training data helps these CAD systems to collect rich information for application in the diagnosis process. However, a large amount of training data is sometimes unavailable for training the models, such as for a new or less common disease and diseases that require expensive image acquisition devices. In such cases, conventional CAD systems are unable to learn their models efficiently. As a result, diagnostic performance is reduced. In this study, we focus on dealing with this problem; thus, our classification method can enhance the performance of conventional CAD systems based on the ensemble model of a support vector machine (SVM), multilayer perceptron (MLP), and few-shot (FS) learning network when working with small training datasets of brain tumor images. Through experiments, we confirmed that our proposed method outperforms conventional deep learning-based CAD systems when working with a small training dataset. In detail, we verified that the lack of training data led to the reduction of classification performance. In addition, we enhanced the classification accuracy from 3% to 10% compared to previous studies that used the SVM-based classification method or fine-tuning of a convolutional neural network (CNN) using two public datasets.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3