Magnetic Field Influence of Photo-Mechanical-Thermal Waves for Optically Excited Microelongated Semiconductor

Author:

Saeed Abdulkafi M.ORCID,Lotfy KhaledORCID,Ahmed Marwa H.

Abstract

A theoretical novel model is investigated that describes the dynamic effects of the microelongation processes of an exciting semiconductor medium. The influence of the magnetic field for the optically excited medium is taken into consideration according to the photothermal transport characteristics. The governing equations were derived during the electronic (ED) and thermoelastic (TED) deformation processes when the microelongation parameters of the semiconductor medium were taken into account. The interference between thermal-magnetic-microelongat-plasma-mechanical waves is investigated. The dimensionless expressions are utilized to solve the main equations according to the harmonic wave technique in two-dimensional (2D) deformation. The complete solutions of the expressions of the physical field were obtained when some conditions were taken on the outer semiconductor surface. The theoretical microelongated semiconductor model in this investigation was checked by comparing it with some previous studies. The numerical simulation for the main physical field distributions is graphically displayed when the silicon (Si) material is used. The impact of various factors such as the magnetic field, thermal memory effect, and microelongation on the wave propagations for main fields was discussed.

Funder

Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3