Author:
Zheng Xiyan,Liang Chengji,Wang Yu,Shi Jian,Lim Gino
Abstract
With the rapid development of global trade, ports and terminals are playing an increasingly important role, and automatic guided vehicles (AGVs) have been used as the main carriers performing the loading/unloading operations in automated container terminals. In this paper, we investigate a multi-AGV dynamic scheduling problem to improve the terminal operational efficiency, considering the sophisticated complexity and uncertainty involved in the port terminal operation. We propose to model the dynamic scheduling of AGVs as a Markov decision process (MDP) with mixed decision rules. Then, we develop a novel adaptive learning algorithm based on a deep Q-network (DQN) to generate the optimal policy. The proposed algorithm is trained based on data obtained from interactions with a simulation environment that reflects the real-world operation of an automated in Shanghai, China. The simulation studies show that, compared with conventional scheduling methods using a heuristic algorithm, i.e., genetic algorithm (GA) and rule-based scheduling, terminal the proposed approach performs better in terms of effectiveness and efficiency.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Soft Science Research Project of National Natural Science Foundation of Shanghai Science and Technology Innovation Action Plan
Shanghai Sailing Program
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献