A Novel Ensemble Strategy Based on Determinantal Point Processes for Transfer Learning

Author:

Lv YingORCID,Zhang Bofeng,Yue XiaodongORCID,Xu ZhikangORCID

Abstract

Transfer learning (TL) hopes to train a model for target domain tasks by using knowledge from different but related source domains. Most TL methods focus more on improving the predictive performance of the single model across domains. Since domain differences cannot be avoided, the knowledge from the source domain to obtain the target domain is limited. Therefore, the transfer model has to predict out-of-distribution (OOD) data in the target domain. However, the prediction of the single model is unstable when dealing with the OOD data, which can easily cause negative transfer. To solve this problem, we propose a parallel ensemble strategy based on Determinantal Point Processes (DPP) for transfer learning. In this strategy, we first proposed an improved DPP sampling to generate training subsets with higher transferability and diversity. Second, we use the subsets to train the base models. Finally, the base models are fused using the adaptability of subsets. To validate the effectiveness of the ensemble strategy, we couple the ensemble strategy into traditional TL models and deep TL models and evaluate the transfer performance models on text and image data sets. The experiment results show that our proposed ensemble strategy can significantly improve the performance of the transfer model.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference51 articles.

1. A survey on transfer learning;IEEE Trans. Knowl. Data Eng.,2009

2. A comprehensive survey on transfer learning;Proc. IEEE,2020

3. Recent advances in transfer learning for cross-dataset visual recognition: A problem-oriented perspective;ACM Comput. Surv. (CSUR),2019

4. Jiang, J., Shu, Y., Wang, J., and Long, M. (2022). Transferability in Deep Learning: A Survey. arXiv.

5. Iman, M., Rasheed, K., and Arabnia, H.R. (2022). A Review of Deep Transfer Learning and Recent Advancements. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3