Some New Generalizations of Integral Inequalities for Harmonical cr-(h1,h2)-Godunova–Levin Functions and Applications

Author:

Saeed TareqORCID,Afzal WaqarORCID,Abbas MujahidORCID,Treanţă SavinORCID,De la Sen ManuelORCID

Abstract

The interval analysis is famous for its ability to deal with uncertain data. This method is useful for addressing models with data that contain inaccuracies. Different concepts are used to handle data uncertainty in an interval analysis, including a pseudo-order relation, inclusion relation, and center–radius (cr)-order relation. This study aims to establish a connection between inequalities and a cr-order relation. In this article, we developed the Hermite–Hadamard (H.H) and Jensen-type inequalities using the notion of harmonical (h1,h2)-Godunova–Levin (GL) functions via a cr-order relation which is very novel in the literature. These new definitions have allowed us to identify many classical and novel special cases that illustrate our main findings. It is possible to unify a large number of well-known convex functions using the principle of this type of convexity. Furthermore, for the sake of checking the validity of our main findings, some nontrivial examples are given.

Funder

Institutional Fund Projects

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. On some Hadamard-type inequalities for h-convex functions;Sarikaya;J. Math. Inequal.,2008

2. Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities;Bombardelli;Comput. Math. Appl.,2009

3. A new Hermite-Hadamard type inequality for h-convex functions;Noor;Creat. Math. Inform.,2015

4. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions;Zhang;J. Math.,2022

5. Integral inequalities of Hadamard type for log-convex functions;Dragomir;Demonstr. Math.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3