Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones

Author:

El-Kenawy El-Sayed M.ORCID,Khodadadi NimaORCID,Mirjalili SeyedaliORCID,Makarovskikh TatianaORCID,Abotaleb MostafaORCID,Karim Faten Khalid,Alkahtani Hend K.ORCID,Abdelhamid Abdelaziz A.ORCID,Eid Marwa M.,Horiuchi TakahikoORCID,Ibrahim AbdelhameedORCID,Khafaga Doaa SamiORCID

Abstract

Background and aim: Machine learning methods are examined by many researchers to identify weeds in crop images captured by drones. However, metaheuristic optimization is rarely used in optimizing the machine learning models used in weed classification. Therefore, this research targets developing a new optimization algorithm that can be used to optimize machine learning models and ensemble models to boost the classification accuracy of weed images. Methodology: This work proposes a new approach for classifying weed and wheat images captured by a sprayer drone. The proposed approach is based on a voting classifier that consists of three base models, namely, neural networks (NNs), support vector machines (SVMs), and K-nearest neighbors (KNN). This voting classifier is optimized using a new optimization algorithm composed of a hybrid of sine cosine and grey wolf optimizers. The features used in training the voting classifier are extracted based on AlexNet through transfer learning. The significant features are selected from the extracted features using a new feature selection algorithm. Results: The accuracy, precision, recall, false positive rate, and kappa coefficient were employed to assess the performance of the proposed voting classifier. In addition, a statistical analysis is performed using the one-way analysis of variance (ANOVA), and Wilcoxon signed-rank tests to measure the stability and significance of the proposed approach. On the other hand, a sensitivity analysis is performed to study the behavior of the parameters of the proposed approach in achieving the recorded results. Experimental results confirmed the effectiveness and superiority of the proposed approach when compared to the other competing optimization methods. The achieved detection accuracy using the proposed optimized voting classifier is 97.70%, F-score is 98.60%, specificity is 95.20%, and sensitivity is 98.40%. Conclusion: The proposed approach is confirmed to achieve better classification accuracy and outperforms other competing approaches.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3