Methodology of Plasma Shape Reachability Area Estimation in D-Shaped Tokamaks

Author:

Mitrishkin Yuri V.,Kruzhkov Valerii I.,Korenev Pavel S.

Abstract

This paper suggests and develops a new methodology of estimation for a multivariable reachability region of a plasma separatrix shape on the divertor phase of a plasma discharge in D-shaped tokamaks. The methodology is applied to a spherical Globus-M/M2 tokamak, including the estimation of a controllability region of a vertical unstable plasma position on the basis of the experimental data. An assessment of the controllability region and the reachability region of the plasma is important for the design of tokamak poloidal field coils and the synthesis of a plasma magnetic control system. When designing a D-shaped tokamak, it is necessary to avoid the small controllability region of the vertically unstable plasma, because such cases occur in practice at a restricted voltage on a horizon field coil. To make the estimations mentioned above robust, PID-controllers for vertical and horizontal plasma position control were designed using the Quantitative Feedback Theory approach, which stabilizes the system and provides satisfactory control indexes (stability margins, setting time, overshoot) during plasma discharges. The controllers were tested on a series of plasma models and nonlinear models of current inverters in auto-oscillation mode as actuators for plasma position control. The estimations were made on these models, taking into account limitations on control actions, i.e., voltages on poloidal field coils. This research is the first step in the design of the plasma shape feedback control system for the operation of the Globus-M2 spherical tokamak. The developed methodology may be used in the design of poloidal field coil systems in tokamak projects in order to avoid weak achievability and controllability regions in magnetic plasma control. It was found that there is a strong cross-influence from the PF-coils currents and the CC current on the plasma shape; hence, these coils should be used to control the plasma shape simultaneously.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference25 articles.

1. Wesson, J. (2004). Tokamaks, Clarendon Press. [3rd ed.].

2. Plasma Control in Tokamaks. Part 1. Controlled thermonuclear fusion problem. Tokamaks. Components of control systems;Mitrishkin;Adv. Syst. Sci. Appl.,2018

3. Plasma Control in Tokamaks. Part. 2. Magnetic Plasma Control Systems;Mitrishkin;Adv. Syst. Sci. Appl.,2018

4. Plasma Control in Tokamaks. Part 3.1. Plasma magnetic control systems in ITER and DEMO;Mitrishkin;Adv. Syst. Sci. Appl.,2020

5. Plasma Control in Tokamaks. Part 3.2. Simulation and realization of plasma control systems in ITER and constructions of DEMO;Mitrishkin;Adv. Syst. Sci. Appl.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3