A Hybrid Prediction Model Based on KNN-LSTM for Vessel Trajectory

Author:

Zhang Lixiang,Zhu YianORCID,Su Jiang,Lu Wei,Li Jiayu,Yao Ye

Abstract

Trajectory prediction technology uses the trajectory data of historical ships to predict future ship trajectory, which has significant application value in the field of ship driving and ship management. With the popularization of Automatic Identification System (AIS) equipment in-stalled on ships, many ship trajectory data are collected and stored, providing a data basis for ship trajectory prediction. Currently, most of the ship trajectory prediction methods do not fully consider the influence of ship density in different sea areas, leading to a large difference in the prediction effect in different sea areas. This paper proposes a hybrid trajectory prediction model based on K-Nearest Neighbor (KNN) and Long Short-Term Memory (LSTM) methods. In this model, different methods are used to predict trajectory based on trajectory density. For offshore waters with a high density of trajectory, an optimized K-Nearest Neighbor algorithm is used for prediction. For open sea waters with low density of trajectory, the Long Short-Term Memory model is used for prediction. To further improve the prediction effect, the spatio-temporal characteristics of the trajectory are fully considered in the prediction process of the model. The experimental results for the dataset of historical data show that the mean square error of the proposed method is less than 2.92 × 10−9. Compared to the prediction methods based on the Kalman filter, the mean square error decreases by two orders of magnitude. Compared to the prediction methods based on recurrent neural network, the mean square error decreases by 82%. The advantage of the proposed model is that it can always obtain a better prediction result under different conditions of trajectory density available for different sea areas.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3