Deep Learning Activation Layer-Based Wall Quality Recognition Using Conv2D ResNet Exponential Transfer Learning Model

Author:

Kim BubryurORCID,Natarajan YuvarajORCID,Munisamy Shyamala Devi,Rajendran Aruna,Sri Preethaa K. R.ORCID,Lee Dong-EunORCID,Wadhwa Gitanjali

Abstract

Crack detection is essential for observing structural health and guaranteeing structural safety. The manual crack and other damage detection process is time-consuming and subject to surveyors’ biased judgments. The proposed Conv2D ResNet Exponential model for wall quality detection was trained with 5000 wall images, including various imperfections such as cracks, holes, efflorescence, damp patches, and spalls. The model was trained with initial weights to form the trained layers of the base model and was integrated with Xception, VGG19, DenseNet, and ResNet convolutional neural network (CNN) models to retrieve the general high-level features. A transfer deep-learning-based approach was implemented to create a custom layer of CNN models. The base model was combined with custom layers to estimate wall quality. Xception, VGG19, DenseNet, and ResNet models were fitted with different activation layers such as softplus, softsign, tanh, selu, elu, and exponential, along with transfer learning. The performance of Conv2D was evaluated using model loss, precision, accuracy, recall, and F-score measures. The model was validated by comparing the performances of Xception, VGG19, DenseNet, ResNet, and Conv2D ResNet Exponential. The experimental results show that the Conv2D ResNet model with an exponential activation layer outperforms it with an F-score value of 0.9978 and can potentially be a viable substitute for classifying various wall defects.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3