Deterioration Model for Reinforced Concrete Bridge Girders Based on Survival Analysis

Author:

Li LiORCID,Lu Yu,Peng Miaojuan

Abstract

The prediction of bridge service performance is essential for bridge maintenance, operation, and decision making. As a key component of the superstructure, the performance of the main girders is critical to the structural safety of the bridge. This study makes full use of the inspection records from the Bridge Management System (BMS) in Shanghai and performs pre-processing work on a large amount of data. Recent advances in survival analysis were utilized to investigate the inspection records of over 40,000 reinforced concrete bridge main girders over a 14-year period. Survival analysis methods based on the Weibull distribution were used to predict the service performance of the main girders, and, in addition, a COX proportional hazards model was used to analyze the effect of different covariates on the survival of the main girders. The results show that the deterioration rate of main girders increases with age, with an average life of 87 years for main girders in Shanghai. The grade of the road on which the bridge is located and the position of the main girder in the bridge superstructure have a significant impact on the probability of survival of the main girder. It can be concluded that more attention should be paid to the inspection and maintenance of side girders on branch roads to reduce the pressure on bridge management in the future. Furthermore, the analysis in this study found that the deterioration rate of the main girders is faster than the deterioration rate of the whole bridge and superstructure, and, therefore, more attention and necessary preventive maintenance measures should be taken in the maintenance and management of the main girders.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3