Tan-Type BLF-Based Attitude Tracking Control Design for Rigid Spacecraft with Arbitrary Disturbances

Author:

Xuan-Mung NguyenORCID,Golestani Mehdi,Hong Sung-Kyung

Abstract

This study deals with the problem of disturbances in observer-based attitude tracking control for spacecraft in the presence of inertia-matrix uncertainty and arbitrary disturbance. Following the backstepping control, a tan-type barrier Lyapunov function (BLF)-based attitude tracking control method with prescribed settling time and performance is systematically developed. The proposed control framework possesses three advantages over the existing attitude controllers. Firstly, the singularity problem associated with the use of fractional power in fixed-time control is effectively resolved without employing any command filter or piece-wise continuous function. Secondly, inspired by the concept of the tan-type BLF approach, any desired performance for the attitude tracking error is satisfied. Lastly, the total disturbance, including the system’s uncertainty, external disturbances, and time-derivative of the virtual control, is precisely reconstructed during a predefined time, even if the initial estimation error tends to infinity. Moreover, this time is determined as a tunable gain in the observer. The numerical simulations confirm the superior performance of the proposed control strategy in comparison with the existing pertinent works.

Funder

Information Technology Research Center

Ministry of Education

Korean government

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3