Mathematical Modeling of COVID-19 Transmission in the Form of System of Integro-Differential Equations

Author:

Domoshnitsky AlexanderORCID,Sitkin Alexander,Zuckerman LeaORCID

Abstract

The model of the spread of the coronavirus pandemic in the form of a system of integro-differential equations is studied. We focus our consideration on the number of hospitalized patients, i.e., on the needs of the system regarding hospital beds that can be provided for hospitalization and the corresponding medical personnel. Traditionally, in such models, the number of places needed was defined as a certain percentage of the number of infected at the moment. This is not quite adequate, since it takes a certain period of time for the development of the disease to the stage at which hospitalization is required. This will be especially evident at the start of new waves of the epidemic, when there is a large surge in the number of infected people, but the need for hospitalization places and additional medical personnel will appear later. Taking this circumstance into account using integral terms in the model allows us to conclude in corresponding additional to existing cases that the wave of disease will attenuate after some time. In others, it will relieve unnecessary panic, because the healthcare system has a certain period to create additional hospitalization places, order medicines and mobilize the necessary medical personnel. We obtain estimates of reproduction number in the case of the model described by a system of integro-differential equations. Results on the exponential stability of this integro-differential system are obtained. It is demonstrated that the condition of the exponential stability coincides with the fact that the reproduction number of the spread of the pandemic is less than one.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3