Author:
Zang Yufu,Yang Bisheng,Li Jianping,Guan Haiyan
Abstract
Deformation detection determines the quantified change of a scene’s geometric state, which is of great importance for the mitigation of hazards and property loss from earth observation. Terrestrial laser scanning (TLS) provides an efficient and flexible solution to rapidly capture high precision three-dimensional (3D) point clouds of hillside areas. Most existing methods apply multi-temporal TLS surveys to detect deformations depending on a variety of ground control points (GCPs). However, on the one hand, the deployment of various GCPs is time-consuming and labor-intensive, particularly for difficult terrain areas. On the other hand, in most cases, TLS stations do not form a closed loop, such that cumulative errors cannot be corrected effectively by the existing methods. To overcome these drawbacks, this paper proposes a deformation detection method with limited GCPs based on a novel registration algorithm that accurately registers TLS stations to the UAV (Unmanned Aerial Vehicle) dense image points. First, the proposed method extracts patch primitives from smoothed hillside points, and adjacent TLS scans are pairwise registered by comparing the geometric and topological information of or between patches. Second, a new multi-station adjustment algorithm is proposed, which makes full use of locally closed loops to reach the global optimal registration. Finally, digital elevation models (DEMs, a DEM is a numerical representation of the terrain surface, formed by height points to represent the topography), slope and aspect maps, and vertical sections are generated from multi-temporal TLS surveys to detect and analyze the deformations. Comprehensive experiments demonstrate that the proposed deformation detection method obtains good performance for the hillside areas with limited (few) GCPs.
Funder
National Science Foundation of China project under Grant
Subject
General Earth and Planetary Sciences
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献