Enhancement of Component Images of Multispectral Data by Denoising with Reference

Author:

Abramov SergeyORCID,Uss Mikhail,Lukin Vladimir,Vozel Benoit,Chehdi Kacem,Egiazarian Karen

Abstract

Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Remote Sensing: Models and Methods for Image Processing;Schowengerdt,2007

2. Potential Applications of the Sentinel-2 Multispectral Sensor and the ENMAP hyperspectral Sensor in Mineral Exploration;Mielke;EARSEL Eproceedings,2014

3. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring

4. Multiple-Spectral-Band CRFs for Denoising Junk Bands of Hyperspectral Imagery

5. First Applications from Sentinel-2A http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/First_applications_from_Sentinel-2A

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3