Multi-Level Classification Based on Trajectory Features of Time Series for Monitoring Impervious Surface Expansions

Author:

Wang Beibei,Chen Zhenjie,Zhu A-XingORCID,Hao Yuzhu,Xu Changqing

Abstract

As urbanization has profound effects on global environmental changes, quick and accurate monitoring of the dynamic changes in impervious surfaces is of great significance for environmental protection. The increased spatiotemporal resolution of imagery makes it possible to construct time series to obtain long-time-period and high-accuracy information about impervious surface expansion. In this study, a three-step monitoring method based on time series trajectory segmentation was developed to extract impervious surface expansion using Landsat time series and was applied to the Xinbei District, Changzhou, China, from 2005 to 2017. Firstly, the original time series was segmented and fitted to remove the noise caused by clouds, shadows, and interannual differences, leaving only the trend information. Secondly, the time series trajectory features of impervious surface expansion were described using three phases and four types with nine parameters by analyzing the trajectory characteristics. Thirdly, a multi-level classification method was used to determine the scope of impervious surface expansion, and the expansion time was superimposed to obtain a spatiotemporal distribution map. The proposed method yielded an overall accuracy of 90.58% and a Kappa coefficient of 0.90, demonstrating that Landsat time series remote sensing images could be used effectively in this approach to monitor the spatiotemporal expansion of impervious surfaces.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3