Change Detection in Remote Sensing Images Based on Image Mapping and a Deep Capsule Network

Author:

Ma Wenping,Xiong Yunta,Wu Yue,Yang Hui,Zhang XiangrongORCID,Jiao Licheng

Abstract

Homogeneous image change detection research has been well developed, and many methods have been proposed. However, change detection between heterogeneous images is challenging since heterogeneous images are in different domains. Therefore, direct heterogeneous image comparison in the way that we do it is difficult. In this paper, a method for heterogeneous synthetic aperture radar (SAR) image and optical image change detection is proposed, which is based on a pixel-level mapping method and a capsule network with a deep structure. The mapping method proposed transforms an image from one feature space to another feature space. Then, the images can be compared directly in a similarly transformed space. In the mapping process, some image blocks in unchanged areas are selected, and these blocks are only a small part of the image. Then, the weighted parameters are acquired by calculating the Euclidean distances between the pixel to be transformed and the pixels in these blocks. The Euclidean distance calculated according to the weighted coordinates is taken as the pixel gray value in another feature space. The other image is transformed in a similar manner. In the transformed feature space, these images are compared, and the fusion of the two different images is achieved. The two experimental images are input to a capsule network, which has a deep structure. The image fusion result is taken as the training labels. The training samples are selected according to the ratio of the center pixel label and its neighboring pixels’ labels. The capsule network can improve the detection result and suppress noise. Experiments on remote sensing datasets show the final detection results, and the proposed method obtains a satisfactory performance.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated learning meets remote sensing;Expert Systems with Applications;2024-12

2. Change detection of multisource remote sensing images: a review;International Journal of Digital Earth;2024-09-09

3. Satellite-based change detection in multi-objective scenarios: A comprehensive review;Remote Sensing Applications: Society and Environment;2024-04

4. Enhanced Graph Structure Representation for Unsupervised Heterogeneous Change Detection;Remote Sensing;2024-02-18

5. Brain-Inspired Learning, Perception, and Cognition: A Comprehensive Review;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3