Wind Field Distribution of Multi-rotor UAV and Its Influence on Spectral Information Acquisition of Rice Canopies

Author:

Feng Lei,Wu Weikang,Wang Junmin,Zhang Chu,Zhao Yiying,Zhu Susu,He YongORCID

Abstract

Unmanned aerial vehicles (UAV) are widely used as remote sensing platforms to effectively monitor agricultural conditions. The wind field generated by the rotors in low-altitude operations will cause the deformation of rice crops, and may affect the acquisition of the true spectral information. In this study, a low-altitude UAV remote sensing simulation platform and a triple-direction wind field wireless sensor network system were built to explore the wind field distribution law. Combined with the multi-spectral images of the rice canopy, the influence of wind field on the spectral information acquisition was analyzed through variance and regression analysis. The results showed that the Z-direction wind field of UAV rotors dominated along three directions (X, Y, and Z). The coefficient of determination (R2) of three linear regression models for Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), and Canopy Coverage Rate (CCR) was 0.782, 0.749, and 0.527, respectively. Therefore, the multi-rotor UAV wind field had an impact on the spectral information acquisition of rice canopy, and this influence could eventually affect the assessment of rice growth status. The models established in this study could provide a reference for the revised model of spectral indices, and offer guidance for the actual operations of low-altitude multi-rotor UAV.

Funder

Major science and technology projects in Zhejiang

National Key Research and Development Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3