Using Very High Resolution Thermal Infrared Imagery for More Accurate Determination of the Impact of Land Cover Differences on Evapotranspiration in an Irrigated Agricultural Area

Author:

Cheng Jie,Kustas William

Abstract

Land cover has a strong effect on the evapotranspiration (ET) and the hydrologic cycle. Urbanization alters the land cover affecting the surface energy balance and ET by, for example, urban encroachment in agricultural areas. This study investigates the potential utility of high resolution ET in determining more accurately the impact of land cover on water use for an agricultural area. The approach was to apply the physically based two-source energy balance (TSEB) model to very high resolution (~8 m) aircraft thermal data and compare the ET pattern and distribution to TSEB output using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on 2 August 2012. Modeled flux components were validated using measurements collected from a network of 16 eddy covariance (EC) towers at the study site. The modeled ET using the aircraft data agreed satisfactorily with the flux tower measurements and had better performance than the TSEB model applied to the ASTER data. The percent errors between ET closed by the Bowen ratio (BR) and residual (RE) approaches were 3 and 1%, respectively. It is shown that the high resolution aircraft ET can more accurately determine the change in ET magnitude by having pure pixels of the main land cover types, namely urban, agriculture, and natural vegetation. As a result, the ET histogram exhibits a significant bi-modal distribution which can be used to accurately distinguish the impact on ET from urban versus agricultural land cover areas and potentially monitor the effect on ET over a landscape due to small changes in land cover. At the coarser 90 m resolution of ASTER, the TSEB ET estimates are more often a combination of urban and agricultural land cover ET near the urban-agriculture land cover boundaries. As a result, the bi-modal distribution in ET is almost nonexistent. This study demonstrates the potential utility of high resolution ET mapping for more accurately determining the magnitude of the ET differences between cropland and urban land cover. It also suggests that, with high resolution thermal imagery, TSEB is a potential tool for monitoring the impact on ET due to relatively small changes in land cover as a result of urban expansion. Such a tool would be useful for watershed management.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3