Abstract
This paper introduces a novel semi-supervised tri-training classification algorithm based on regularized local discriminant embedding (RLDE) for hyperspectral imagery. In this algorithm, the RLDE method is used for optimal feature information extraction, to solve the problems of singular values and over-fitting, which are the main problems in the local discriminant embedding (LDE) and local Fisher discriminant analysis (LFDA) methods. An active learning method is then used to select the most useful and informative samples from the candidate set. In the experiments undertaken in this study, the three base classifiers were multinomial logistic regression (MLR), k-nearest neighbor (KNN), and random forest (RF). To confirm the effectiveness of the proposed RLDE method, experiments were conducted on two real hyperspectral datasets (Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS)), and the proposed RLDE tri-training algorithm was compared with its counterparts of tri-training alone, LDE, and LFDA. The experiments confirmed that the proposed approach can effectively improve the classification accuracy for hyperspectral imagery.
Subject
General Earth and Planetary Sciences
Reference50 articles.
1. Hyperspectral remote sensing;Ben-Dor,2013
2. Hyperspectral image data mining for band selection in agricultural applications;Groves;Trans. ASAE,2004
3. Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data;Plaza,2005
4. Hyperspectral Mineral Identification Using SVM and SOM;Iranzad,2013
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献