Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China

Author:

Qu Yuquan,Zhu Zhongli,Chai Linna,Liu Shaomin,Montzka CarstenORCID,Liu Jin,Yang Xiaofan,Lu Zheng,Jin Rui,Li Xiang,Guo Zhixia,Zheng Jie

Abstract

Time series of soil moisture (SM) data in the Qinghai–Tibet plateau (QTP) covering a period longer than one decade are important for understanding the dynamics of land surface–atmosphere feedbacks in the global climate system. However, most existing SM products have a relatively short time series or show low performance over the challenging terrain of the QTP. In order to improve the spaceborne monitoring in this area, this study presents a random forest (RF) method to rebuild a high-accuracy SM product over the QTP from 19 June 2002 to 31 March 2015 by adopting the advanced microwave scanning radiometer for earth observing system (AMSR-E), and the advanced microwave scanning radiometer 2 (AMSR2), and tracking brightness temperatures with latitude and longitude using the International Geosphere–Biospheres Programme (IGBP) classification data, the digital elevation model (DEM) and the day of the year (DOY) as spatial predictors. Brightness temperature products (from frequencies 10.7 GHz, 18.7 GHz and 36.5 GHz) of AMSR2 were used to train the random forest model on two years of Soil Moisture Active Passive (SMAP) SM data. The simulated SM values were compared with third year SMAP data and in situ stations. The results show that the RF model has high reliability as compared to SMAP, with a high correlation (R = 0.95) and low values of root mean square error (RMSE = 0.03 m3/m3) and mean absolute percent error (MAPE = 19%). Moreover, the random forest soil moisture (RFSM) results agree well with the data from five in situ networks, with mean values of R = 0.75, RMSE = 0.06 m3/m3, and bias = −0.03 m3/m3 over the whole year and R = 0.70, RMSE = 0.07 m3/m3, and bias = −0.05 m3/m3 during the unfrozen seasons. In order to test its performance throughout the whole region of QTP, the three-cornered hat (TCH) method based on removing common signals from observations and then calculating the uncertainties is applied. The results indicate that RFSM has the smallest relative error in 56% of the region, and it performs best relative to the Japan Aerospace Exploration Agency (JAXA), Global Land Data Assimilation System (GLDAS), and European Space Agency’s Climate Change Initiative (ESA CCI) project. The spatial distribution shows that RFSM has a similar spatial trend as GLDAS and ESA CCI, but RFSM exhibits a more distinct spatial distribution and responds to precipitation more effectively than GLDAS and ESA CCI. Moreover, a trend analysis shows that the temporal variation of RFSM agrees well with precipitation and LST (land surface temperature), with a dry trend in most regions of QTP and a wet trend in few north, southeast and southwest regions of QTP. In conclusion, a spatiotemporally continuous SM product with a high accuracy over the QTP was obtained.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

State Key Laboratory of Earth Surface Processes and Resource Ecology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3