Developing an Advanced PM2.5 Exposure Model in Lima, Peru

Author:

Vu Bryan,Sánchez Odón,Bi Jianzhao,Xiao Qingyang,Hansel Nadia,Checkley William,Gonzales Gustavo,Steenland Kyle,Liu YangORCID

Abstract

It is well recognized that exposure to fine particulate matter (PM2.5) affects health adversely, yet few studies from South America have documented such associations due to the sparsity of PM2.5 measurements. Lima’s topography and aging vehicular fleet results in severe air pollution with limited amounts of monitors to effectively quantify PM2.5 levels for epidemiologic studies. We developed an advanced machine learning model to estimate daily PM2.5 concentrations at a 1 km2 spatial resolution in Lima, Peru from 2010 to 2016. We combined aerosol optical depth (AOD), meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF), parameters from the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), and land use variables to fit a random forest model against ground measurements from 16 monitoring stations. Overall cross-validation R2 (and root mean square prediction error, RMSE) for the random forest model was 0.70 (5.97 μg/m3). Mean PM2.5 for ground measurements was 24.7 μg/m3 while mean estimated PM2.5 was 24.9 μg/m3 in the cross-validation dataset. The mean difference between ground and predicted measurements was −0.09 μg/m3 (Std.Dev. = 5.97 μg/m3), with 94.5% of observations falling within 2 standard deviations of the difference indicating good agreement between ground measurements and predicted estimates. Surface downwards solar radiation, temperature, relative humidity, and AOD were the most important predictors, while percent urbanization, albedo, and cloud fraction were the least important predictors. Comparison of monthly mean measurements between ground and predicted PM2.5 shows good precision and accuracy from our model. Furthermore, mean annual maps of PM2.5 show consistent lower concentrations in the coast and higher concentrations in the mountains, resulting from prevailing coastal winds blown from the Pacific Ocean in the west. Our model allows for construction of long-term historical daily PM2.5 measurements at 1 km2 spatial resolution to support future epidemiological studies.

Funder

National Institutes of Health

National Cancer Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing

2. Air pollution, PM 2.5 composition, source factors, and respiratory symptoms in asthmatic and nonasthmatic children in Santiago, Chile

3. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: A meta-analysis of cohort studies;Liu;J. Biomed. Res.,2017

4. WHO Global Urbanhttp://www.who.int/phe/health_topics/outdoorair/databases/cities/en/

5. Climate and Health Country Profile—2015: Peru,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3